Relative K-stability for Kähler Manifolds

نویسنده

  • RUADHAÍ DERVAN
چکیده

We study the existence of extremal Kähler metrics on Kähler manifolds. After introducing a notion of relative K-stability for Kähler manifolds, we prove that Kähler manifolds admitting extremal Kähler metrics are relatively K-stable. Along the way, we prove a general Lp lower bound on the Calabi functional involving test configurations and their associated numerical invariants, answering a question of Donaldson. When the Kähler manifold is projective, our definition of relative K-stability is stronger than the usual definition given by Székelyhidi. In particular our result strengthens the known results in the projective case (even for constant scalar curvature Kähler metrics), and rules out a well known counterexample to the “näıve” version of the Yau-Tian-Donaldson conjecture in this setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-stability of constant scalar curvature Kähler manifolds

We show that a polarised manifold with a constant scalar curvature Kähler metric and discrete automorphisms is K-stable. This refines the K-semistability proved by S. K. Donaldson.

متن کامل

Kähler-Ricci flow, Kähler-Einstein metric, and K-stability

We prove the existence of Kähler-Einstein metric on a K-stable Fano manifold using the recent compactness result on Kähler-Ricci flows. The key ingredient is an algebro-geometric description of the asymptotic behavior of Kähler-Ricci flow on Fano manifolds. This is in turn based on a general finite dimensional discussion, which is interesting in its own and could potentially apply to other prob...

متن کامل

H-minimal Lagrangian fibrations in Kähler manifolds and minimal Lagrangian vanishing tori in Kähler-Einstein manifolds

H-minimal Lagrangian submanifolds in general Kähler manifolds generalize special Lagrangian submanifolds in Calabi-Yau manifolds. In this paper we will use the deformation theory of H-minimal Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.

متن کامل

Relative K-stability and Modified K-energy on Toric Manifolds

Abstract. In this paper, we discuss the relative K-stability and the modified K-energy associated to the Calabi’s extremal metric on toric manifolds. We give a sufficient condition in the sense of convex polytopes associated to toric manifolds for both the relative Kstability and the properness of modified K-energy. In particular, our results hold for toric Fano manifolds with vanishing Futaki-...

متن کامل

Two-orbit Kähler Manifolds and Morse Theory

We deal with compact Kähler manifolds M acted on by a compact Lie group K of isometries, whose complexification K has exactly one open and one closed orbit in M . If the K-action is Hamiltonian, we obtain results on the cohomology and the K-equivariant cohomology of M .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016